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Quark Masses in Terms of Gauge Constants
and Cabibbo Angle
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Fritzsch type of mass matrices for the 2 × 2 case and appropriate Lagrangians enable
the choice of Yukawa constants of the Lagrangians in terms of the gauge constants. The
mass matrices for the four quarks are shown to be proportional to VL. The Cabibbo
angle is computed to be 13◦36′.
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1. INTRODUCTION

In the standard model, the Yukawa coupling constants of the Lagrangian
which generate Fermion masses through Higgs scalars or multiplets have no
constraints on them to relate them to the gauge constants. The Yukawa constants are
arbitrary. Generally these Yukawa constants are put in by hand in the Lagrangian.
When such Lagrangians are used to predict experimental results, one obtains the
numerical values of these Yukawa constants.

In this paper we choose a mass matrix which is real and symmetric. This is
a 3 × 3 Fritzsch (1978, 1979; Li, 1979) mass matrix. We reduce this mass matrix
for the case of a four-quark model. A Lagrangian is chosen with CP violation
(Mohapatra and Senjanovic, 1981; Raju, 1985, 1986, 1997; Mohapatra, 1972;
Mohapatra and Pati, 1975; Pais, 1973; see also, Taylor, 1976). The Yukawa con-
stants of the Lagrangian s are so chosen so that the resulting 2 × 2 mass matrices
are identical to the 2 × 2 Fritzsch mass matrices. This choice of the Yukawa con-
stants results in eigen values for mu, mc, md and ms which agree approximately
with the known constituent masses of these quarks. Using these masses we also de-
termine the Cabibbo mixing angle which agrees approximately with experiment.
This suggests our choice of the Yukawa constants of the Lagrangians is correct.
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These Yukawa constants contain gauge constants in a complicated way but the
mass matrix is proportional to the VEV, VL.

The paper is organized in the following way. Section 2 contains Fritzsch mass
matrices and the orthogonal matrices that diagonalize these matrices. In Section 3
we reduce these 3 × 3 Fritzsch mass matrices to the 2 × 2 mass matrices relevant
to a four-quark case. Using the well-known definition for mixing, we derive a
formula for the Cabibbo mixing angle. Section 4 contains the Lagrangians for the
(u, c) case. In Section 5 the Lagrangians for the (d, s) case are presented. Section 6
contains discussion of our results.

2. FRTIZSCH TYPE OF MASS MATRICES

The Fritzsch Ansatz (1978, 1979; Li, 1979) for the mass matrix states that
only the heaviest generation has a diagonal element and all other lighter masses
arise through mixings between neighboring families. We have for a = u, d,

Fa =




0 Aa 0

Aa 0 Ba

0 Ba Ca


 (1)

where Fa is known as Fritzsch mass matrix. It is real and symmetric. The nonzero
elements A, B, C of the Fritzsch mass matrix can be expressed in terms of the
three eigen values m1, −m2, and m3 by equating the invariants (e.g. the trace and
the determinant).

A =
√

m3m2m1

m3 − m2 + m1
, (2)

B =
√

(m3 − m2)(m3 + m1)(m2 − m1)

m3 − m2 + m1
(3)

and

C = (m3 − m2 + m1) (4)

For the sake of completeness we reproduce here the elements of the orthogonal
matrix that diagonalizes the 3 × 3 Fritzsch mass matrix.

O11 =
√

m3m2(m3 − m2)

(m3 − m1)(m2 + m1)(m3 − m2 + m1)
,

O12 =
√

m1(m3 − m2)

(m3 − m1)(m2 + m1)
,
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O13 = −
√

m1(m2 − m1)(m3 + m1)

(m3 − m1)(m2 + m1)(m3 − m2 + m1)
,

O21 = −
√

m3m1(m3 + m1)

(m3 + m2)(m2 + m1)(m3 − m2 + m1)
,

O22 =
√

m2(m3 + m1)

(m3 + m2)(m2 + m1)
,

O23 = −
√

m2(m3 − m2)(m2 − m1)

(m3 + m2)(m2 + m1)(m3 − m2 + m1)
,

O31 =
√

m2m1(m2 − m1)

(m3 + m2)(m3 − m1)(m3 − m2 + m1)
,

O32 =
√

m3(m2 − m1)

(m3 + m2)(m3 − m1)
,

and

O33 =
√

m3(m3 − m2)(m3 + m1)

(m3 − m1)(m3 + m2)(m3 − m2 + m1)
. (5)

3. THE CABIBBO MIXING MATRIX

When there are only four quarks (u, c, d, s) the corresponding Fritzsch type
of mass matrices can be obtained from the 3 × 3 Fritzsch matrices by first setting
m1 = 0, and then taking m3 = m2 and m2 = m1 in Equations (2)–(4). Thus for
the two generation case the Fritzsch type of real symmetric mass matrix is given
by

Ma
c =




0 0 0

0 0
√

m2m1

0
√

m2m1 m2 − m1


 , (6)

where a = u or d and the subscript c is for Cabibbo. For example for the (u, c)
case the mass matrix is,

Mu
c =




0 0 0

0 0
√

mcmu

0
√

mcmu mc − mu


 , (7)
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From the orthogonal matrix O given by Equation (5) we can also obtain the
orthogonal matrix Oa

c that diagonalizes (6) in the following way. First put m1 = 0
in Equation (5) and then take m3 → m2 and m2 → m1. The orthogonal matrix
that diagonalizes Equation (6) is thus given by,

Oa
c =




1 0 0

0
√

m2

m2 + m1
−
√

m1

m1 + m2

0
√

m1

m2 + m1

√
m2

m2 + m1




, (8)

where again a = u, or d. The Cabibbo mixing matrix is given by,

Vc = Od
c

(
Ou

c

)trans
(9)

In Vc there are no complex phases. The only parameter is commonly taken to be
the Cabibbo mixing angle θc, and we write,

Vc =




1 0 0

0 cos θc −sin θc

0 sin θc cos θc


 , (10)

From Equations (8)–(10) it just follows that,

θc = θ2 − θ1 =
[

tan−1

√
md

ms

− tan−1

√
mu

mc

]
(11)

4. THE (u, c) MASS MATRIX

Let the Higgs sector consist of multiplet (Mohapatra and Senjanovic, 1981)
φ( 1

2 , 1∗
2 , 0) and φ̃ = τ2φ

∗τ2, ( 1
2 , 1∗

2 , 0) such that,

〈φ〉 =
(

κ 0

0 κ ′

)
, (12)

where κ and κ ′ are real. In addition to the above multiplet, the Higgs sector has the
Higgs scalar φL corresponding to the standard model, and another Higgs scalar
φR corresponding (Raju, 1985, 1986) to the left-right model with,

〈φL〉 = VL, (13)

and

〈φR〉 = VR, (14)
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where VL and VR are real. Let the Lagrangian for the (u, d) quarks with φ be,

−L1 = h1Q̄1LφQ1R + h2Q̄1Lφ̃Q1R + H.C, (15)

where,

Q1L =
(

uL

dL

)
and Q1R =

(
uR

dR

)
, (16)

From the above Lagrangian we note that the masses of ‘u’ and ‘d’ quarks are given
by,

mu = m1 = h1κ + h2κ
′, (17)

and

md = m3 = h1κ
′ + h2κ, (18)

The Yukawa coupling constants h1 and h2 are real. In an exactly similar fashion
we assume that φ is also coupled to ‘c’ and ‘s’ quarks such that,

−L2 = h3Q̄2LφQ̄2R + h4Q̄2Lφ̃Q̄2R + H.C. (19)

where,

Q2L =
(

cL

sL

)
and Q2R =

(
cR

sR

)
(20)

At this stage, the masses of c and s quarks are respectively,

m2 = h3κ + h4κ
′, (21)

and

m4 = h3κ
′ + h4κ. (22)

The coupling constants h3 and h4 are real.
In addition to the above Lagrangians the (u, c) quarks are also coupled to φL

and φR (Raju, 1997). Before taking up this Lagrangian let us note the following
information. Given a Dirac field ψ , the Hermitian scalar and pseudo scalar ψ̄ψ

and iψ̄γ5ψ have opposite CP and T transformation properties. (In this respect
they are unlike the vector and axial vector ψ̄γλψ, ψ̄γλγ5ψ .) This is the key to
CP violation by a Higgs field. The simplest model used a Higgs field φL and a
Lagrangian containing,

mψ̄ψ + iaψ̄γ5ψφL, (23)

where ‘a’ is a real coupling constant. This conserves CP if φL is assigned CP = −1.
But if spontaneous symmetry breaking gives φL a non-zero VEV, VL then (23)
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may be written,(
m2 + a2V 2

L

)1/2
ψ̄ ′ψ ′ + aψ̄ ′(sin α + iγ5 cos α)ψ ′φ′

L, (24)

where,

φL = VL + φ′
L and ψ = exp

(
−1

2
iγ5α

)
ψ ′, (25)

and,

tan α = aVL

m
(26)

Vector or axial vector interactions are unaffected by the transformation from ψ to
ψ ′. The CP violation is now caused by the exchange of φ′

L particles (Mohapatra,
1972; Mohapatra and Pati, 1975; Pais, 1973; Taylor, 1976).

We can implement the above scheme in the case of (u, c) and (d, s) quarks.
For (u, c) quarks the Lagrangian is chosen:

−L3 = m1ūu + m2c̄c − a1ūuφL + a0ūcφL + a0c̄uφL

+ iaLc̄γ5cφL + iaRc̄γ5cφR, (27)

where a1, a0, aL and aR are real Yukawa constants. The first two terms are the
contributions of Equations (17) and (21). After spontaneous symmetry breaking
and due to the following transformations and restrictions,

c = exp
(
−iγ5

α1

2

)
c′, (28)

u = exp
(
−iγ5

α2

2

)
u′, (29)

and

m1 = a1VL and α1 + α2 = 0, (30)

We can write the Lagrangian L3 in the following way:

−L3 = oū′u′ + a0VLū′c′ + a0VLc̄′u′ + [
m2

2 + (aLVL + aRVR)2]1/2
c̄′c′

− a1 cos α1ū
′u′φ′

L + a0ū
′c′φ′

L + a0c̄
′u′φ′

L − ia1 sin α1ū
′γ5u

′φ′
L

+ aLc̄′[iγ5 cos α1 + sin α1]c′φ′
L + aRc̄′[iγ5 cos α1 + sin α1]c′φ′

R (31)

To avoid constant terms like c̄′γ5c
′ in the above Lagrangian we require that,

tan α1 = (aLVL + aRVR)

m2
, (32)

In addition α1 + α2 = 0 ensures the absence of terms like ū′γ5c
′φ′

L and their
Hermitian conjugates. The choice m1 = a1VL is required to obtain a 2 × 2 Fritzsch
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type of mass matrix as in Equation (7). Also the Yukawa constant a0 is chosen in
the following way so as to yield the off-diagonal element of the mass matrix as in
Equation (7).

a0 =

√√√√√√a1


 gL√

2
a2

(
gν

gA

)4

dsb

2




1/2

(33)

The Yukawa constant a2 appears in the Lagrangian for (d, s) quarks (to be discussed
in the next section). Moreover we will show there a2VL = md = m3. Whenever
md occurs in the (u, c) mass matrix, we found that it should be replaced by m′

d

where m′
d = md

(gν/gA)4
dsb

2 .
With this Ansatz only we obtain expressions for constituent masses of the

(u, c) quarks that are in agreement with the known information. For this reason
(gv/gA)4

dsb

2 appears in Equation (33). Of course a similar Ansatz works well for the
(d, s) quarks also (see next section). Here,(

gv

gA

)4

dsb

=
(

−1 + 4

3
sin2 θω

)2

(34)

For the (u, c) quarks, the mass matrix is now given by Equation (31),

Mu
c =


 0 a0VL

a0VL

√
m2

2 + (aLVL + aRVR)2


 (35)

The off-diagonal element a0VL is given by,

a0VL =

√√√√√√a1VL


 gL√

2
VLa2VL

(
gv

gA

)4

dsb

2




1/2

,

=
√

mu[MωLm′
d ]1/2 (36)

To bring in MωL, the gauge constant of SU(2)L, gL√
2

is chosen in a0. Similarly a1

and a2 appear in a0 to bring in mu and md . If we ignore the trivial elements of the
3 × 3 matrix of Equation (7), Mu

c has the desired form now in (35).
The diagonal term in (35) contains three unknowns, aL, aR and VR . There is

no loss of generality if we re-express the three unknowns in terms of m′
d , mu and

m2, which are also as of now, are unknown. To this end we take,

a2
LV 2

L

(
1 + aRVR

aLVL

)2

= [(m′
dMωL)1/2 − mu]2 − m2

2 (37)



450 Chandra Raju and Chintalapati

Collecting all the terms, the 2 × 2 mass matrix Mu
c now reads,

Mu
c = VL




0

√√√√√√a1


 gL√

2
a2

(
gv

gA

)4

dsb

2




1/2

√√√√√√a1


 gL√

2
a2

(
gv

gA

)4

dsb

2




1/2 
a2

(
gv

gA

)4

dsb

2

gL√
2




1/2

− a1




(38)

Except a1 and a2, all the Yukawa constants in this mass matrix are all gauge con-
stants of the standard model. These gauge constants appear in a complicated form.
The mass matrix (Mu

c )(Mu
c )+ is diagonalized by Equation (8). This orthogonal

matrix is given by,

Ou
c =

(
cos θ1 −sin θ1

sin θ1 cos θ1

)
, (39)

where

tan θ1 =
√

mu

mc

=
√

A1 (40)

Here,

A1 = a1[
a2

gL√
2

(
gv
gA

)4

dsb

2

]1/2 (41)

In Equations (40) or (41) if we set a1 = a2 (which is equivalent to mu = md ),
then,

tan θ1 =

√√√√√√√

 a1

gL√
2

(
gv
gA

)4

dsb

2




1/2

(42)

The eigen values of (Mu
c )(Mu

c )+ are,

m2
u = (a1VL)2, (43)

and

m2
c = m′

d/MwL (44)
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If mu = md = 0.3 GeV, and MwL = 80 GeV, then mc = 1.69 GeV. This agrees
very approximately with the known constituent mass of the C-quark. Here we
took sin2 θω = 0.2254 (Raju, 1997).

For mu = 0.3 GeV, the Yukawa Constant a1 is given by,

0.3 GeV = (a1VL) = a1MWL

(gL/
√

2)
,

and hence,

a1 = 0.00265gL (45)

θ1 = tan−1
(√

A1

)
= 22◦49′, (46)

where Equation (42) is used for obtaining the angle θ1.

5. THE (d, s) MASS MATRIX

In the case of (d, s) quarks the following Lagrangian which is similar in all
respects to Equation (27) is chosen.

−L4 = m3d̄d + m4s̄s − a2d̄dφL + b0d̄sφL + b0s̄dφL

+ ibLs̄γ5sφL + ibRs̄γ5sφR, (47)

where the very first two terms are the contributions of Equations (18) and (22).
Again all the Yukawa constants a2, b0, bL are real. In addition,

d = exp
(
−iγ5

α3

2

)
d ′, (48)

s = exp
(
−iγ5

α4

2

)
s ′. (49)

We also require that,

α3 + α4 = 0, (50)

and

m3 = md = a2VL, (51)

with

tan α4 =
(

bLVL + bRVR

m4

)
. (52)

The above requirements ensure the absence of terms like d̄γ5s
′VL and

d̄ ′γ5s
′φ′

L and their Hermitian conjugates. The choice m3 = a2VL is required to
obtain a mass matrix that has the desired form as in Equation (6).
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With these conditions after spontaneous symmetry breaking the Lagrangian
(47) may be written as,

−L4 = od̄ ′d ′ + b0VLd̄ ′s ′ + b0VLs̄ ′d ′ + [
m2

4 + (bLVL + bRVR)2
]1/2

s̄ ′s ′

− a2 cos α4d̄
′d ′φ′

L + b0d̄
′s ′φ′

L + b0s̄
′d ′φ′

L − ia2 sin α4d̄
′γ5d

′φ′
L

+ bLs̄ ′[iγ5 cos α4 + sin α4]s ′φ′
L + bRs̄ ′[iγ5 cos α4 + sin α4]s ′φ′

R (53)

As in the case of (u, c) quarks, here also we require that,

b0VL =
√

a2VL

[
gL√

2
VLa1VL

(gV /gA)4
uct

2

]1/2

, (54)

and

b2
LV 2

L

(
1 + bRVR

bLVL

)2

= (m′
uMwL − md )2 − m2

4 (55)

In Equation (54) mu = a1VL appears. We replaced mu by m′
u = mu

(gV /gA)4
uct

2 . This
is exactly identical to the Ansatz we followed in the case of the (u, c) mass matrix
and the gauge constants there. Only this choice of the Yukawa constants leads to
the constituent masses of the (d, s) quarks that agree quite well with experiment.

Collecting all the terms, the mass matrix for the (d, s) case is now given by,

Md
c = VL




0

√√√√√√a2


 gL√

2
a1

(
gv

gA

)4

uct

2




1/2

√√√√√√a2


 gL√

2
a1

(
gν

gA

)4

uct

2




1/2 
a1

(
gν

gA

)4

uct

2

gL√
2




1/2

− a2




. (56)

The matrix (Md
c )(Md

c )+ is diagonalized by the following orthogonal matrix,

Od
c =

(
cos θ2 −sinθ2

sin θ2 cos θ2

)
, (57)

where,

tan θ2 =
√

md

ms

=
√

B2. (58)
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Here,

B2 = a2[
a1

gL√
2

(
gν
gA

)4

uct

2

]1/2 (59)

Moreover, (
gv

gA

)4

uct

=
(

−1 + 8

3
sin2 θω

)2

(60)

The eigen values of (Md
c )(Md

c )+ matrix are,

m2
d = (a2VL)2, (61)

and

m2
s = m′

uMWL, (62)

where m′
u = mu

(gV/gA)4
uct

2 . For mu = md = 0.3 GeV,ms = 0.55 GeV which
agrees approximately. The exact expressions for m2

c and m2
s are given in (Raju,

1997). If mu = md , it is equivalent to a1 = a2 and hence from (58) and (59) we
readily note that,

θ2 = tan−1

√√√√(
a1(

gL/
√

2
) (gV /gA)4

uct

2

)1/2

= 36◦25′ (63)

The above result is obtained by using a1VL = 0.3 GeV and gL√
2
VL = MWL =

80 GeV in Equation (63). The Cabibbo angle is given by,

θc = θ2 − θ1 = 13◦36′. (64)

This is an approximate result. An exact result is given in (Raju, 2000).

6. DISCUSSION

In this paper the choice of the Lagrangians L3 and L4 are based on the
presumption that there is a CP violation because of the Higgs field whose VEV
is not zero. In addition to this requirement, we required that the mass matrix be
identical to a Fritzsch type of mass matrix which is real and symmetric. This
enabled us to choose the Yukawa constants a0 and b0 in Equations (33) and (54).
The masses of the quarks are found here in terms of the gauge constants and VEV
VL. The appearance of the ratio (gV /gA)4 along with mu and md strengthens our
belief that the Higgs scalars or multiplets are bound states of Z, Z∗, D, D∗, etc. as
explained in (Raju, 1986).
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If there is no CP violation, in place of L3 of Equation (28) we can choose the
following simple Lagrangian,

−L3 = m1ūu + m2c̄c − a1ūuφL

+a0ūcφL + a0c̄uφL + aLc̄cφL + aRc̄cφR, (65)

After spontaneous symmetry breaking and with the following choices,

m1 = a1VL, (66)

and,

aLVL + aRVR = [
(m′

dMWL)1/2 − m1
]− m2, (67)

we obtain a mass matrix for (u, c) quarks given by,

Mu
c =

(
0 a0VL

a0VL [(m′
dMWL)1/2 − m1]

)
. (68)

The Yukawa constant a0 is still given by Equation (33). The eigen values for m2
u

and m2
c are also given by Equations (43) and (44).

The Lagrangians for (d, s) quarks can also be written down in a similar way.
The basic thing is that the elements of the mass matrix are again proportional to
the VEV, VL and the Yukawa constants do contain the gauge constants like gL and
(gV /gA)4. In addition the eigen values for the masses do yield the right values for
the Cabibbo angle.

Another basic question is why there is Cabibbo mixing at all. The Cabibbo
angle will be zero if A1 and B2 of Equations (41) and (59) are equal. This is
equivalent to the following relation,(

md

mu

)3/2

= (gV /gA)2
uct

(gV /gA)2
dsb

= 0.325, (69)

where we used sin2 θω = 0.2254. The above relation is equivalent to the relation
md = 0.47 mu. If the (u, d) quarks are chargeless then Equation (69) implies that
they will have the same mass and there will be no Cabibbo mixing. In the case of
Leptons, the electron and muon neutrinos have equal mass (Raju, 1986) and there
is no Cabibbo like mixing there. Does this suggest any unity in diversity? If the
mass md is about half that of mu, there would have been no Cabibbo mixing.
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